Local linear regression estimation for time series with long-range dependence
نویسندگان
چکیده
منابع مشابه
Log-periodogram Regression of Time Series with Long Range Dependence
This paper discusses the use of fractional exponential models (Robinson (1990), Beran (1994)) to model the spectral density f(x) of a covariance stationary process when f(x) may be decomposed as f(x) = x ?2d f (x), where f (x) is bounded and bounded away from zero. A form of log-periodogram regression technique is presented both in the parametric context (i.e. f (x) is a nite order exponential ...
متن کاملSpecification Testing in Nonlinear Time Series with Long – Range Dependence
This paper proposes a model specification testing procedure for parametric specification of the conditional mean function in a nonlinear time series model with long–range dependence. An asymptotically normal test is established even when long–range dependence is involved. In order to implement the proposed test in practice using a simulated example, a bootstrap simulation procedure is establish...
متن کاملBayesian Time Series Modelling and Prediction with Long-Range Dependence
We present a class of models for trend plus stationary component time series, in which the spectral densities of stationary components are represented via non-parametric smoothness priors combined with long-range dependence components. We discuss model tting and computational issues underlying Bayesian inference under such models, and provide illustration in studies of a climatological time ser...
متن کاملLocal polynomial estimation in partial linear regression models under dependence
A regression model whose regression function is the sum of a linear and a nonparametric component is presented. The design is random and the response and explanatory variables satisfy mixing conditions. A new local polynomial type estimator for the nonparametric component of the model is proposed and its asymptotic normality is obtained. Specifically, this estimator works on a prewhitening tran...
متن کاملMultivariate Regression Estimation : Local Polynomial Fitting for Time Series
We consider the estimation of the multivariate regression function m (x 1 , . . . ,xd) = E [ψ (Yd) | X 1 = x 1 , . . . ,Xd = xd], and its partial derivatives, for stationary random processes {Yi ,Xi} using local higher-order polynomial fitting. Particular cases of ψ yield estimation of the conditional mean, conditional moments and conditional distributions. Joint asymptotic normality is establi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 1999
ISSN: 0304-4149
DOI: 10.1016/s0304-4149(99)00015-0